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A solution is given of the problem of thermal siresses in a solid
circular cylinder, allowing for compressibility of the material
and the Mises plasticity condition. It is shown thart the radial and
annular stresses are determined by simplified formulas with suf-
ficient accuracy for engineering purposes.

In the analysis of cylindrical bodies in the stressed
condition in a nonuniform temperature field, a plasti-
city condition of the simplest type is used in some
papers [1,2].
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Here the radial and annular stresses-in the plastic
strain region are statically determinate and are found
by integration of the equation of equilibrium
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In particular, when there is plastic strain in the pe-
ripheral layers of the section of a cylinder heated from
within and there are no external loads, i.e., when
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the radial and annular stresses are determined by the
relations
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In the elastic strain region (0 = r = r;), assuming no
change in the elastic characteristics of the material,
the stress components are determined by the re-
lation [1]
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the continuity of radial and annular stresses being
maintained at the boundary between the regions, i.e.,
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o5 =0k, for r=r, (8)

The determination of longitudinal stresses in a cy-
linder requires more detailed study of the interrela-
tion of strains and stresses in elastoplastic defor-
mation.

In using the theory of small elastoplastic strains,
the strain and stress components are interrelated by
the Hencky equations:
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From the last equation of (9) we find
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For a compressible material, the plasticity mo-
dulus ¢ is determined by the type of stress condition,
which makes it more difficult to find o, from (10). In
this connection, in order to find ¢,, additional simpl-
ifications in the formulation of the problem are made.

Use is made in [3,4] of the assumption of incom -
pressibility of the material in the plastic strain re-
gion, allowing explicit expressions to be obtained for
the plasticity modulus and the longitudinal strain.

It has been shown in [4] that when the Tresk con-
dition is used and the material is assumed to be in-
compressible (u = 0.5), the plasticity modulus is
determined by the equation
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The longitudinal strain is
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If, in addition to the assumption of incompressibi~
lity of the material, a simplified expression for the
temperature field is used in the form

T(r)=AT, r¥R?, (13)
we find from (11) and (12) that
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When the distribution is parabolic, expressions
(6) and (7) take the form
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Thus, by making a number of assumptions, we may

obtain very simple expressions for the basic para-
meters to be calculated. It should be noted that the

plasticity condition in the form of Eq. (1) may be used

only when the longitudinal stresses (o,) are inter-
mediate in magnitude between the radial (o,) and the
annular (09) stresses. In-cases when this condition is
not evident, it is necessary to use the more general
plasticity condition of Mises [5]
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The solution is given below for the state of stress
of a solid circular cylinder in a nonuniform tem-
perature field. Compressibility of the cylinder ma-
terial is allowed for (N = 0 in the Hencky equations)
when using the Mises plasticity condition (15') and
a constant yield point (k) is assumed. The solution is
derived by using the trigonometrical formulation put

forward in (6) during examination of the state of stress

of a hollow cylindrical tube subjected to internal and
external pressures.
We express the stress components by the equations
o =k{c—aTyM + k(v —sing), (16)
of =k(c—aT)M+ k(w +sing), 1)
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where M = 2(1 + u)/(1 ~ 2p) = const and ¢ = const.

It is not hard to verify that Egs. (16)—(18) satis-
fy the Mises plasticity condition (15'). Allowing for
the condition €, = const, the equation of strain com-
patibility may be written in the form
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The last of the Hencky equations leads to the relation
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Substituting expressions (9)—(11) into (2), (12), and
(13), we obtain the relation
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The system of equations (22) and (24) may be sol-
ved by the method of finite differences. Replacing the
derivatives by finite increment relations, we obtain
a system of finite difference equations:
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The system (25) allows us to determine values of
the functions ¢(r) and ¢ (r) in succession, step by step
(Ar), beginning from the boundary ry of regions of
elastic and plastic strain. The boundary values of the
functions when r = rj are found in the following way.

1t follows from (16) and (17) that
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The difference of the stresses on the right side of
(26) may be found from the continuity condition (8)

at the boundary of the region, taking expressions (15)
into account:
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The modulus of plasticity at the boundary of the re-
gion is equal to unity i.e., ¢, =1. The solution of the
system (25) has been carried out for values ¢y = -n/2
and g = 1, the region of plastic strain (ro=r = R)
being divided into 20 intervals of equal width Ar® =

= (R = ry)/20.
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After finding the functions ¢ and ¢, the stresses in
the plastic region were calculated* from (16)-~(18),
and those in the region of elastic strain from (15), the
constant ¢ being determined from (16) allowing for the
boundary condition (3).
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Thermal stress distribution along the cylinder radius
(MN/m?: a) @ = 107 deg™; E = 19.6* 10 MN/m?% =
= 0.25; k = 147 MN/m’® (steel); AT, = 540 deg; b) @ =
=1.5.107° deg™; E = 22+ 10* MN/m?; 1. = 0.25; k =
= 294 MN/m? (steel); AT, = 600 deg; 1—0,; 2—0p;

3 —0p.

The results are shown in the figure by solid lines
for two sets of initial parameters and compared with
those of calculation (dotted lines) according to the
simplified solution, based on the assumptions of in-
compressibility of the material in the plastic strain
region and the Tresk plasticity condition.

It may be seen from the figure that the stress results
from the two methods do not differ greatly. In par-
ticular, on the cylinder axis the stress components
found by allowing for compressibility of the material
are not more than 3 —4% less than the corresponding
results of the simplified solution, when 1% = 0.5 and
N = 0. The discontinuity in longitudinal stress dis-
tribution along the cylinder radius at r = ry (using the
simplified solution), caused by the difference in Poi-
sson's ratio in the two regions, does not exceed 5%
of the maximum values of g,.

The analysis made allows us to conclude that when
there is a comparatively small region of plastic strain
encompassing the peripheral layers of the cylinder
section, the determination of thermal stresses in the
axial region of the cylinder (i.e., in the elastic strain
region) on the assumption of incompressibility of the

*Using the electronic computer "Minsk-1"
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material and the Tresk flow condition is quite justi-
fied.

It should additionally be noted that the above method
of solving the problem by using a trigonometrical
formulation is not sufficiently universal.

From comparison of the system (16)—(18) with (8},
we derive the conditions ¢ = g,. On the other hand, the
magnitude of the longitudinal strain ¢, was found from
the condition that the moment of the longitudinal for-
ces is zero, i.e.,

R
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In view of this, among the test computational con-
ditions chosen (and presented in the figure), we in-
cluded conditions for which the choice of the constant
¢ = g, was associated with fulfillment of boundary con-
ditions (3) and (27). Thus the method of solution des~
cribed, which takes account of the compressibility of
the material, allows us to determine uniquely only
the radial and annular stresses, while additional con-
ditions connected with the determination of the longi~
tudinal strain &, are required for finding the longi-
tudinal stresses.

In regard to this difficulty, Hill's remarks [5]
should be noted. He assumed that the longitudinal
stresses in a cylindrical tube are determined by the
strain history and should therefore be found by means
of a system of Reuss kinetic equations instead of a
system of Hencky equations.

NOTATION

Op. Og. Oz) radial, annular, and longitudinal components of the
stress tensor; €r, €g, €) the same, for the strain tensor; T) excess
temperature; o) coefficient of linear expansion; G) shear modulus;

E) Young's modulus; k) yield point in shear; cs) the same, in tension;
) Poisson’s ratio; r) coordinate along the cylinder radius; rg) radius
of the boundary between regions of elastic and plastic strain; R)
cylinder radius; ¥) modulus of plasticity.
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